Skip to main content

SHORT REVISION ON ALGEBRAIC IDENTITIES.

 

SHORT REVISION ON ALGEBRAIC IDENTITIES.

As you probably know “An Algebraic identity is an algebraic equation that is true for all values of the variables occurring in it.” These Identities play a vital role in any algebraic or mathematical calculation.

So, this post is made for the short revision of the Algebraic Identities. Some of these are :

·        (x + y)2 = x2 + 2xy + y2
·        (x - y)2 = x2 - 2xy + y2
·        x2y2 = (x + y) (xy)
·        (x + a) (x + b) = x2 + (a + b)x + ab
·        (x + y + z)2 = xyz2 + 2(xy yz zx)
·        (x + y)3 = x3 + y3 + 3xy (x + y
·        (xy)3 = x3y3 – 3xy(xy)
·        x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2xyyzzx)
·        x3 + y3 = (x + y)(x2 – xy + y2)
·        x3 - y3 = (x - y)(x2 + xy + y2)

Some advanced Algebraic Identities :

·        x2 + y2 = (x - y)2 + 2xy
·        (x + y)2 = (x - y)2 + 4xy
·        (x - y)2 = (x + y)2 - 4xy
·        x4 – y4 = (x2 + y2)(x + y)(x - y)
·       x8 – y8 = (x4 + y4)(x2 + y2)(x + y)(x - y)
·        (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)( z + x)

These are the algebraic identities that are used mostly in the calculation.


Recommended -

Short trick to calculate the square of two digits Numbers.

Short trick to multiply any two digits Number by 11.

Short trick to multiply any two digits Numbers.

Comments

Popular posts from this blog

SHORT TRICK TO CALCULATE THE SQUARE OF ANY TWO DIGITS NUMBER THAT ENDS WITH 5.

As you probably know, the square of a number is a number multiplied by itself. For example, the square of 9 is 9 x 9 = 81. This post is made to enable you to easily calculate the square of any two-digit or three-digit (or higher) number.  That method is especially simple when the number ends in 5, so let’s do that trick now. To square a two-digit number that ends in 5, you need to remember only two things. 1. The answer begins by multiplying the first digit by the next higher digit. 2. The answer ends in 25. For example, to square the number 35, we simply multiply the first digit (3) by the next higher digit (4), then attach 25. Since 3 x 4 = 12, the answer is 1225. Therefore, 35x35 = 1225.  Our steps can be illustrated this way: How about the square of 85?  Since 8 x 9 = 72,  we immediately get 85 x 85 = 7225. Similarly we can calculate the following squares  15 x 15 = 225  25 x 25 = 625  35 x 35 = 1225  45 x 45 = 2025  55 x 55 = 3025 ...

SHORT TRICK TO MULTIPLY ANY TWO DIGITS NUMBERS.

You should observe to learn the working of this method. Step - 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digits as shown below: Step - 3: Multiply the ten’s digits (leftmost digits) of both the numbers. Note: If the results obtained in step 1 and step 2 have more than one digit, note down the unit place of the result and carry over the ten’s place of the result to the left. Let us understand the process through some examples: Example 1: Solve 13 × 12 Step - 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digits as shown below: Step - 3: Multiply the ten’s digits (leftmost digits) of both the numbers. So,13 × 12 = 156 Now before you get too excited, I have shown you only half of what you need to know. Suppose the problem is Example 2: Solve 28 × 35. Step- 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digi...

THALES OF MILETUS

Mathematics as we know it today, with theorems and proofs, began with the great Greek mathematician Thales of Miletus (ca. 624–548 BCE). Miletus was among the first free city-states within the larger Greek empire, which spanned much of the eastern Mediterranean from Anatolia to the south of Italy and Egypt, including the islands in between. Lying on the coast of Anatolia, Miletus was one of the oldest and most prosperous Greek settlements of the time. Thales is often called the first philosopher. He is also known for his famous saying “Know thyself,” which was even engraved on the stone entrance to the cave of the Oracle of Delphi, a sacred site where the Greeks sought counsel from their gods. Additionally, Thales was one of the Seven Sages of Greece, though according to the historian Plutarch, he surpassed the others. In his book on Solon, another of the Seven Sages, Plutarch says this about Thales: “He was apparently the only one of these whose wisdom stepped, in speculation, beyo...