Skip to main content

SHORT TRICK TO MULTIPLY ANY TWO DIGIT NUMBER BY 11.

 

SHORT TRICK TO MULTIPLY ANY TWO DIGIT NUMBER BY 11.

This post is made to learn “How to multiply, in your head, any two-digit number by eleven?” It’s very easy once you know the secret.

Consider the problem:

32 x 11

To solve this problem, simply add the digits, 3 + 2 = 5, put the 5 between the 3 and the 2, and there is your answer:

352

Now you try:

53 x 11

Since 5 + 3 = 8, your answer is simply

583

One more. Without looking at the answer or writing anything down, what is

81 x 11?

Did you get 891? Congratulations!

 Now before you get too excited, I have shown you only half of what you need to know. Suppose the problem is

85 x 11

Although 8 + 5 = 13, the answer is NOT 8135!

As before, the 3 goes in between the numbers, but the 1 needs to be added to the 8 to get the correct answer:

935

Think of the problem this way:

1

835

935

 Here is another example. Try 57 x 11.

Since 5 + 7 = 12, the answer is:

1

527

627

 

Okay, now it’s your turn. As fast as you can, what is

a.) 83 x 11?   b.) 78 x 11?   c.) 28 x 11?  d.)  63 x 11?


If you got the answer 913,858, 308, 693 respectively then give yourself a pat on the back. You are on your way to become a mathemagician.

Comments

Popular posts from this blog

SHORT TRICK TO MULTIPLY ANY TWO DIGITS NUMBERS.

You should observe to learn the working of this method. Step - 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digits as shown below: Step - 3: Multiply the ten’s digits (leftmost digits) of both the numbers. Note: If the results obtained in step 1 and step 2 have more than one digit, note down the unit place of the result and carry over the ten’s place of the result to the left. Let us understand the process through some examples: Example 1: Solve 13 × 12 Step - 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digits as shown below: Step - 3: Multiply the ten’s digits (leftmost digits) of both the numbers. So,13 × 12 = 156 Now before you get too excited, I have shown you only half of what you need to know. Suppose the problem is Example 2: Solve 28 × 35. Step- 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digi...

SHORT TRICK TO CALCULATE THE SQUARE OF ANY TWO DIGITS NUMBER THAT ENDS WITH 5.

As you probably know, the square of a number is a number multiplied by itself. For example, the square of 9 is 9 x 9 = 81. This post is made to enable you to easily calculate the square of any two-digit or three-digit (or higher) number.  That method is especially simple when the number ends in 5, so let’s do that trick now. To square a two-digit number that ends in 5, you need to remember only two things. 1. The answer begins by multiplying the first digit by the next higher digit. 2. The answer ends in 25. For example, to square the number 35, we simply multiply the first digit (3) by the next higher digit (4), then attach 25. Since 3 x 4 = 12, the answer is 1225. Therefore, 35x35 = 1225.  Our steps can be illustrated this way: How about the square of 85?  Since 8 x 9 = 72,  we immediately get 85 x 85 = 7225. Similarly we can calculate the following squares  15 x 15 = 225  25 x 25 = 625  35 x 35 = 1225  45 x 45 = 2025  55 x 55 = 3025 ...

REAL LIFE APPLICATIONS OF TRIGONOMETRY | REAL LIFE MATH.

  Triangle trigonometry has many applications that help find unknown lengths or angle measurements. For instance, paintings, motion pictures, and televisions have ideal viewing distances in order to create the greatest possible image from the eye. The triangle is formed between the view and the top and bot- tom (or the sides) of the viewing object. Here are the 5 best Real Life Applications of Trigonometry. 1.)  In Astronomy Astronomers use triangle trigonometry to determine distances and sizes of objects. For example, the distance from the earth to the moon, and earth to the sun, can be found by identifying their angles from the horizon during an eclipse. The height of a solar flare can also be determined by measuring the angle from the sun to the tip of the flare, and using distance information about the earth and sun. 2.)  In Engineering Work Trigonometry can be used to find unknown lengths or angle measurements. In a situation involving right triangles, only a side le...