As you probably know- "Every real-world object and every geometrical figure that is not a point or a line has a surface. The amount or size of that surface is called the object’s or figure’s area." but, have you ever thought what could be the real life applications of area?
In this post you are going to know about the Real Life Applications of Area.
1.) DRUG DOSING
The amount of a drug that a person should take depends, in general, on their physical size. This is because the effect of a drug in the body is determined by how concentrated the drug is in the blood, not by the total amount of drug in the body. Children and small adults are therefore given smaller doses of drugs than are large adults. The size of a patient is most often determined by how much the patient weighs. However, in giving drugs for human immunodeficiency virus (HIV, the virus that causes AIDS), hepatitis B, cancer, and some other diseases, doctors do not use the patient’s weight but instead use the patient’s body surface area (BSA). They do so because BSA is a better guide to how quickly the kidneys will clear the drug out of the body.
2.) BUYING BY AREA
Besides addition and subtraction to keep track of money, perhaps no other mathematical operation is performed so often by so many ordinary people as the calculation of areas. This is because the price of so many common materials depends on area: carpeting, floor tile, construction materials such as sheetrock, plywood, exterior siding, wallpaper, and paint, whole cloth, land, and much more. In deciding how much paint it takes to paint a room.
For example, a painter measures the dimensions of the walls, windows, floor, and doors. The walls (and ceiling or floor, if either of those is to be painted) are basically rectangles, so the area of each is calculated by multiplying its height by its width. Window and door areas are calculated the same way. The amount of area that is to be painted is, then, the sum of the wall areas (plus ceiling or floor) minus the areas of the windows and doors. For each kind of paint or stain, manufacturers specify how much area each gallon will cover, the spread rate. This usually ranges from 200 to 600 square feet per gallon, depending on the product and on the smoothness of the surface being painted. (Rough surfaces have greater actual surface area, just as the lid of an egg carton has more surface area than a flat piece of cardboard of the same width and length.) Dividing the area to be painted by the spread rate gives the number of gallons of paint needed.
3.) FILTERING
Surface area is important in chemistry and filtering because chemical reactions take place only when substances can make contact with each other, and this only happens on the surfaces of objects: the outside of a marble can be touched, but not the center of it (unless the marble is cut in half, in which case the center is now exposed on a new surface). Therefore a basic way to take a lump of material, like a crystal of sugar, and make it react more quickly with other chemicals is to break it into smaller pieces. The amount of material stays the same, but the surface area increases.
But don’t larger cubes or spheres have more surface area than small ones? Of course they do, but a group of small objects has much more surface area than a single large object of the same total volume.
4.) CLOUD AND ICE AREA AND GLOBAL WARMING
Climate change is a good example of the importance of area measurements in earth science. For almost 200 years, human beings, especially those in Europe, the United States, and other industrialized countries, have been burning massive quantities of fossil fuels such as coal, natural gas, and oil (from which gasoline is made). The carbon in these fuels combines with oxygen in the air to form carbon dioxide, which is a greenhouse gas. A greenhouse gas allows energy from the Sun get to the surface of the Earth, but keeps heat from escaping (like the glass panels of a greenhouse). This can melt glaciers andice caps, thus raising sea levels and flooding low-lying lands, and can change weather patterns, possibly making fertile areas dry and causing violent weather disasters to happen more often. Scientists are constantly trying to make better predictions of how the world’s climate will change as a result of the greenhouse effect.
Among other data that scientists collect to study global warming, they measure areas. In particular, they measure the areas of clouds and ice-covered areas. Clouds are important because they can either speed or slow global climate change: high, wispy clouds act as greenhouse filters, warming Earth, while low, puffy clouds act to reflect sunlight back into space, cooling Earth. If global warming produces more low clouds, it may slow climate change; if it produces more high wispy clouds, it may speed climate change. Cloud areas are measured by having computers count bright areas in satellite photographs.
5.) SURVEYING
If a parcel of land is rectangular, calculating its area is simple: length x width. But, how do surveyors find the area of an irregularly shaped piece of land—one that has crooked boundaries, or maybe even a winding river along one side?
If the piece of land is very large or its boundaries very curvy, the surveyor can plot it out on a map marked with grid squares and count how many squares fit in the parcel. If an exact area measurement is needed and the parcel’s boundary is made up of straight line segments, which is usually the case, the surveyor can divide a drawing of the piece of land into rectangles, trapezoids, triangles. The area of each of these can be calculated separately using a standard formula, and the total area found as the sum of the parts.
Today, it is also possible to take global positioning system readings of locations around the boundary of a piece of property and have a computer estimate the inside area automatically. This is still not as accurate as an area estimate based on a true survey, because global positioning systems are as yet only accurate to within a meter or so at best. Error in measuring the boundary leads to error in calculating the area.
Recommended -
Comments
Post a Comment