Skip to main content

BEST WAY TO CLASSIFY AND DEFINE THE NUMBERS.

BEST WAY TO CLASSIFY AND DEFINE THE NUMBERS.

 Numbers are the basic terms to embark upon any counting. Can we make any calculation without the help of any number ? Moreover, can you even count your fingers without using any number ?
The answer is , No.

In this post we are going to learn about what the numbers really are and how could be classified on the basis of their properties.
 
Can you answer the question "What is a number ?"
The answer is " A number is an arithmetic value that represents a particular quantity. It is expressed by symbols, words and figures. It is used in counting and making calculations."
 
It probably looks like a theoretical note but, it is the explanation of a number.
 
Now we are moving towards Types of Numbers.
  1. Natural Numbers  - Numbers that are naturally used in counting are called natural numbers. They are denoted by N.

    These are ; (1,2,3,…so on.)

  2. Whole numbers – If o is also considered as a number then natural numbers and 0 together made set of numbers which are called Whole Numbers. They are denoted by W. They include all the Natural Numbers.

    These are ; (0,1,2,3,…so on.)

  3. Integers – If we combine all the Whole Numbers with the negatives of Natural Numbers then we get a new set of Numbers which are called Integers. They include all the Whole Numbers.

    These are ; (……,-3,-2,-1,0,1,2,3,…so on.)

  4. Rational Numbers – If a Number can be written in the form of p/q where p and q are integers, then it is said to be a Rational Number. These are denoted by Q. They include all the Integers.

    These are ; ½, ¾..etc. and all the Integers.

  5. Irrational Numbers – Numbers which are not Rational are called Irrational Numbers. These cannot be written in the form of p/q.

  6. Real numbers – If Rational Numbers and Irrational Numbers are combined together then They are called real Numbers.

     Real Numbers = Rational Numbers + Irrational Numbers

  7. Prime Numbers – A Number having exactly two factors, one is the unity(1) and another is the number itself, called a Prime Numbers.

    These are ; 2,3,5,7,11,…so on.

    Note – 1 is not a prime number because it does not have 2 factors.

  8. Composite Numbers – A number having more than two factors is called a Composite Number.

    These are ; 4,6,8,9,10,…..so on

  9. Even Numbers – Numbers that are divisible with 2 are called Even Numbers.

    These are ; (….,-6,-4,-2,0,2,4,6,….so on.)

  10. Odd Numbers - Numbers that are not divisible with 2 are called Odd Numbers.

    These are ; (….,-6,-4,-2,0,2,4,6,….so on.)

Comments

Popular posts from this blog

SHORT TRICK TO CALCULATE THE SQUARE OF ANY TWO DIGITS NUMBER THAT ENDS WITH 5.

As you probably know, the square of a number is a number multiplied by itself. For example, the square of 9 is 9 x 9 = 81. This post is made to enable you to easily calculate the square of any two-digit or three-digit (or higher) number.  That method is especially simple when the number ends in 5, so let’s do that trick now. To square a two-digit number that ends in 5, you need to remember only two things. 1. The answer begins by multiplying the first digit by the next higher digit. 2. The answer ends in 25. For example, to square the number 35, we simply multiply the first digit (3) by the next higher digit (4), then attach 25. Since 3 x 4 = 12, the answer is 1225. Therefore, 35x35 = 1225.  Our steps can be illustrated this way: How about the square of 85?  Since 8 x 9 = 72,  we immediately get 85 x 85 = 7225. Similarly we can calculate the following squares  15 x 15 = 225  25 x 25 = 625  35 x 35 = 1225  45 x 45 = 2025  55 x 55 = 3025 ...

SHORT TRICK TO MULTIPLY ANY TWO DIGITS NUMBERS.

You should observe to learn the working of this method. Step - 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digits as shown below: Step - 3: Multiply the ten’s digits (leftmost digits) of both the numbers. Note: If the results obtained in step 1 and step 2 have more than one digit, note down the unit place of the result and carry over the ten’s place of the result to the left. Let us understand the process through some examples: Example 1: Solve 13 × 12 Step - 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digits as shown below: Step - 3: Multiply the ten’s digits (leftmost digits) of both the numbers. So,13 × 12 = 156 Now before you get too excited, I have shown you only half of what you need to know. Suppose the problem is Example 2: Solve 28 × 35. Step- 1: Multiply the unit digits (rightmost digits) of both the numbers, Step - 2: Add the cross product of the digi...

REAL LIFE APPLICATIONS OF TRIGONOMETRY | REAL LIFE MATH.

  Triangle trigonometry has many applications that help find unknown lengths or angle measurements. For instance, paintings, motion pictures, and televisions have ideal viewing distances in order to create the greatest possible image from the eye. The triangle is formed between the view and the top and bot- tom (or the sides) of the viewing object. Here are the 5 best Real Life Applications of Trigonometry. 1.)  In Astronomy Astronomers use triangle trigonometry to determine distances and sizes of objects. For example, the distance from the earth to the moon, and earth to the sun, can be found by identifying their angles from the horizon during an eclipse. The height of a solar flare can also be determined by measuring the angle from the sun to the tip of the flare, and using distance information about the earth and sun. 2.)  In Engineering Work Trigonometry can be used to find unknown lengths or angle measurements. In a situation involving right triangles, only a side le...